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AN AUTOMATED RECRUITING MODEL FOR AN OPTIMAL 

TEAM OF SOFTWARE ENGINEERS FROM GLOBAL 

FREELANCING PLATFORMS 
 

 
Abstract. The COVID-19 pandemic has dramatically changed the shape of 

conventional recruitment processes over the past few months. Remote working 

where it is technically possible has become a de facto standard all over the world. 
For software development, Freelancing platforms, as virtually unlimited resources 

of globally distributed talents, pose a great opportunity but also plenty of risks. 

This study proposes an automated model for recruiting remote specialists in a 

framework meant to reduce the time-to-market for software products. The results 
are optimal in relation to the project’s cost, team’s productivity and overall 

product success. The research methodology along with the system used to collect 

data and the relevance of the data set are described. 
Keywords: Freelance Marketplaces, Follow the Sun, Global Software 

Development, Project Management, Automated recruiting.  
 

JEL Classification: F66, J20, J46, M15, O30. 
 

1. Introduction 
 
Freelance Marketplaces such as Upwork, Freelancer.com or Guru facilitate 

access to remote services from an unprecedented pool of specialists in various 

fields. For instance, Upwork, arguably the largest platform of its kind, was reported 
in 2018 as having 12 million active freelancers, out of which 500.000 were 

registered as “Web, mobile and software development” specialists. Although 

advanced filters for criteria including area of expertise, hourly rates, work history 

and feedback are available, a client might still end up with a selection of thousands 
of candidates which by all means is impossible to manually evaluate in a 
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reasonable time interval. This leads to a significant risk of not being able to recruit 
the most suitable providers, which the current study aims to mitigate. 

In a world where tech start-ups frequently emerge with the help of web and 

mobile Minimum Viable Products, reducing the time-to-market for a software 
product is crucial for the success of a business. Similar to many other fields, a 

Software Development Process can be accelerated by vertically or horizontally 

scaling the resources. Given the fact that software development is performed by 

human operators, vertical scaling can be translated to hiring better prepared and 
more productive team members, while horizontal scaling implies hiring more 

resources to contribute in parallel. The first strategy has an impact on the 

development cost, while the second on the complexity of the project management 
process. Also, an important constraint is that most software architectures break the 

product into logical components and technology layers where contributions cannot 

be committed in parallel. Although modern web and mobile development 
technologies take advantage of loosely-coupled architectures, with a precise 

separation between data, user interface and logic layers, and working on multiple 

functional features at the same time is possible, a limitation for parallel work is 

reached within the same feature. To overcome this, programming in shifts has been 
proposed and experimented starting with the late 90’s at IBM (Carmel, 1999), and 

later on in other companies (Carmel et al., 2010), (Treinen & Miller Frost, 2006). 

The concept, known as “Follow the Sun” or “Round the Clock Development”, aims 
to reduce the time-to-market by contracting parallel teams of software engineers, 

with complementary time-zones and with daily handoffs between shifts. 
Offshore outsourcing for software development has been a common 

practice for many years and with the emergence of global Freelancing platforms 
along with recent large-scale adoption of remote work and coordination techniques 

improvements is arguably the first option given the COVID-19 Pandemic context 

when assessing the development framework for a web or mobile product. 
This study identifies the cumulated benefits of the “Follow the Sun” 

development, referred to as FTS, using individual freelance software engineers 

recruited from acknowledged global marketplaces and proposes an automated 
theoretical model for the optimal team. 
 

 

2. Proposed Follow the Sun development framework 
 

Due to the nature of its outcome, a large pool of globally-distributed 

specialists and an overwhelming and easy to access documentation, web and 
mobile software development is one of the most suitable sub-fields to be dealt with 

remote resources. A continuous development process is theoretically possible with 

development cells consisting of 3 full-time software engineers that are 8 hours 
apart, based on their time-zones. It is a common practice that a full-time employee 

to allocate 8.5 or 9 hours / day for the job with breaks included, allowing the model 
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to accommodate handoffs. Figure 1 depicts such a scenario, the configuration for 

which the current study builds the optimal selection of candidates. 
Other evaluated configurations of development in shifts models, with 4 

shifts, having full or part-time allocation, are listed in Table 1 along with impact on 

various metrics or risks compared to a conventional development process. A 

significant positive impact is emphasized with a light green background, while a 

negative impact has a red background. 

 

Figure 1. Follow the Sun development with 3 full-time members 

(FTS1) overlapping schedule  
 

Assuming there is an equal hourly cost for all developers in a 

configuration, all the FTS scenarios generate additional costs due to the schedule 
overlap. In addition, the management of a software development process with 

globally distributed human resources is more difficult. 
However, the time-to-market is theoretically reduced to one third of the 

one consumed in a conventional process. Furthermore, a positive impact on 

software quality and innovation is possible due to taking advantage of continuous 

knowledge sharing between team members. Higher overlapping contexts such as 
the proposed FTS2, has redundant developers for 45% of the daily time schedule. 

This facilitates pair-programming and consistent code-reviewing which as shown 

in (Beck & Fowler, 2001), (Layman et al., 2006) can even simplify the Quality 

Assurance processes. 
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Table 1. Various Follow the Sun configurations compared to 

conventional development 

 
Conv. 

1x8.5h / day 
FTS1 

3x8.5h/ day 
FTS2 

4x8.5h / day 
FTS3 

4x6.5h / day 

Time-to-market 

reduced with 
0 64.44% 63.64% 63.64% 

Hourly rate cost 
increase 

0 6.66% 45.45% 9.09% 

Impact on software 
quality and innovation 

- + +++ + 

Impact on efficiency 0 0 0 + 

Reducing QA effort - - + - 

Impact on project when 

one member becomes 

unavailable 
High Low Low Low 

Synchronization and 

handoff risk 
n/a High Low High 

Synchronization 

between all members 
n/a + - - 

Impact on Project 

Management effort 
+ - - - 

 

 
3. The overall architecture of the automated selection flow 

 

Considering the FTS1 framework, and the aforementioned shortcoming that 

a list of compatible candidates may be too large for a human operator to evaluate, 
the problem to which the current study proposes a solution is to create an 

automated flow that would return the optimal set(s) of 3 developers, by analyzing 

the same information to which a human decision maker might have access. The 
optimal selection has to be in relation with the following criteria: 

 The duration of the development processes based on the estimated project 
effort divided by the predicted productivity of each team member. 

 The cost of development, as the total amount paid to the developers, which 
computes to hourly rates multiplied by the duration. 

 The Success Rate of the development process, as a probability predicted 
from the technical expertise and work history of each team member. 

 
From an architectural perspective, the proposed solution has 4 stages as 

also depicted in Figure 2: 
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1. Defining the requirements of the software project, representing the 

flow’s input with the objective of narrowing the stack of specialists to a 

sub-set of required technologies. Additionally, it has to provide a 
quantitative estimation of the development effort. Acknowledged Agile 

software methodologies determine the duration based on a total of 

estimated story-points and the amount of story points a developer from a 
certain expertise / seniority class typically delivers / day or week. 

Figure 2. The Architecture of the automated selection solution 
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2. Collecting Data is the phase in which the profiles of compatible 
candidates are retrieved using a custom-built crawling and scraping 

application from the Freelancing platform and converted to a structured 

data set. 

3. Predicting individual Job Success Scores and Seniority Classification 
involves applying and validating Machine Learning algorithms over the 

data set in order to be able to compute a risk factor and the productivity 
class for each candidate. 

4. Finding the optimal team consists of theoretically solving and 

implementing an optimization problem to select the most suitable set of 3 
developers that have complementary time-zones in relation to the project 

requirements. 
 
 

4. The data set 
 

In order to validate the selection model, real data was considered. 
Upwork.com was chosen as the data source given its market share but also the 

authors familiarity with the platform. 
Freelancer profiles on Upwork resemble a personal Curriculum Vitae, 

showcasing expertise areas, qualifications for various technical assessments, hourly 

rates and the history of jobs delivered through the platform. 
An individual metric of high importance for this study, available on each 

freelancer’s profile, is the Job Success Score which is a subjective boolean input 

from customers in regard to the outcome of each project delivered through the 

platform. 
At the moment of the study, the website indicated a modern architecture 

built around a Single-Page Application and multiple back-end APIs. As shown in 

Gheorghe et al. (2018), the web page for this type of applications is dynamically 

rendered when data is retrieved from the server, making automated data collecting 
difficult through conventional methods such as interpreting HTTP responses. To 

overcome this, a mechanism to automate a headless browser and extract the 

necessary data was created. The solution, built with Python and Selenium 

WebDriver, consists of a web-crawler to retrieve the software engineers profile 
URLs based on various search criteria, and a scraper to extract information from an 

individual profile to a structured data set. In order to minimize the server stress, a 

crawl politeness strategy was set in place, mainly through issuing page requests at 
intervals of 150 seconds or higher. 

To emphasize the relevance of the data set, a summary of the collected data 

is presented in Table 2. 
Furthermore, analyzing the histograms for each variable showed 

anticipated distributions with no abnormal frequency drops, so we are entitled to 

state that the dataset is statistically significant. 
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Table 2. Summary of the collected profiles 

Profiles Projects Projects 

value 
Hours 

worked 
Technical 

tests 
Countries Hourly 

rates 

2,670 55,594 $71,065,349 3,107,467 8,168 103 $3 - 250 

 
After being collected, the data set was pre-processed, reducing the number 

of metrics from 120 to 21 by grouping similar technical assessment scores into 

categories relevant for web and mobile development, and taking the maximum 

score, if any, for each of these. Also for each candidate, the country, a categorical 
variable, was assigned to one of 7 distinct geographical regions. A high number of 

metrics, later on serving as independent variables, would have raised 

multicollinearity issues with the Machine Learning algorithms used in the 

following stage of the model. 
 

 
5. Predicting the Job Success Score 

 

Although the Job Success Score, JSS, was computed for each freelancer, 
the platform doesn’t display this metric if its value is less than 60%. Equally, we 

considered that the model should accommodate new entries as well, for which a 

JSS cannot be determined until the first project is delivered through the platform. 
Therefore, it was of great interest to predict the chances a software engineer 

successfully delivers a new project based on his country, hourly cost, expertise and 

work history. 
Using Python and the scikit-learn library (Pedregosa et al., 2011), the first 

attempt was to implement a Multiple Linear Regression with a Backward 

Elimination algorithm. Although the program removed 7 independent variables 

until the predictor reached a theoretical statistical significance by having an 
acceptable Adjusted R2 and p-value, validating the model through multiple training 

and test sets, k-fold cross-validation (Kohavi, 1995), returned a poor accuracy of 

only 30.58%. This leads to the following preliminary conclusion: a linear 
dependency between the profile and the JSS cannot be determined. 

The following step was to try to predict the JSS with Random Forrest 

Regression which is an Ensemble Learning algorithm that computes the average 

prediction of multiple Decision Trees. Using a Grid-Search strategy to find the 
most performing set of parameters and validate the regressor through k-fold cross-

validation, the returned accuracy over our data set was 63.03%, a noticeable 

improvement from the previous predictor. However, running a feature-importances 
analysis revealed a strongly dominant feature identified as the number of delivered 

projects variable from the data set, with a score of 62.44%. Therefore, a second 

preliminary conclusion is that in estimating the JSS, the work experience has the 
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most significant weight. Other factors, such as technical assessments scored less 
than 1%. Furthermore, the less significant variable was the country of origin. We 

interpret this as highly relevant for a software development methodology that 

pursues employment of globally-distributed specialists. 
Given the fact the goal of this study is to select the optimal set of 3 

software engineers, the focus was changed towards estimating the project’s overall 

success chances, as per the following formula: 

    𝑆 = ∏ 𝐽𝑆𝑆𝑖
3
𝑖=1     (1) 

 
In this new context, imagining all 3 team members with individual JSS of 

80% or lower would render the project’s success to less than 50% as showcased in 

Figure 3, which many might find unacceptable. 
 

Figure 3. Classes of risk 
 

Therefore, instead of the aiming to precisely estimate individual JSS, the 
problem was transformed to a classification one, still relevant to the selection 

model. To enforce this reasoning, at the time of this research, it was notorious 

among users of popular Freelancing platforms that technical test scores were 
arguably easy to bias, due to their quick disclosure over the Internet. 

For the classification problem, due to the complexity of factors that might 

determine a customer to set a project as successful or not, doubled by the poor 

statistical performance of other regression models, we opted for a Feed Forward 
Neural Network with adam as the Stochastic Gradient Descent improved technique 

to optimize the cost function (Kingma & Ba, 2014). The implementation of the 

classifier was done in Python with the Tensorflow ANN framework and Keras. 
Grid-Search was also used to find the best performing model parameters. 

Validating the model through a confusion matrix returned a remarkable 

accuracy of 81.04% compared to the real observations. 
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An interesting finding was revealed when the classifier was run on the 

dataset after job history related metrics were removed. Although inferior to the 

previous one, the resulted 65.40% accuracy leads us to a third preliminary 
conclusion which is: new entries can be risk classified only with technical 

assessments, country of origin, hourly rate and English score. It is reasonable to 

consider a performance improvement of this classification model in relation with a 

more rigorous technical testing framework. 
 

 
6. Segmenting candidates into productivity classes 

 

Rigorously establishing a hierarchy or classification among software 
engineers based on their expertise level and productivity represents an endeavor 

across industry. Although seniority classes have similar titles, for instance 

variations for junior / mid / senior developer, technical leader and solution 

architect, different companies may have different standards in assigning these roles 
as quantifying experience, efficiency and productivity hasn’t been yet standardized 

for all software technologies or project complexity levels (Duarte, 2014), (Raza & 

Faria, 2014). 
Therefore, especially for evaluating a high number of candidates, it is of 

high importance to segment the population into sub-sets based on empirical 

measured metrics such as working history, productivity and technical abilities. 
Given that there is no observable dependent variable to predict or to classify, the 

solution is an unsupervised analysis. 
As one of the most established methods in the field of unsupervised 

learning, the K-means algorithm was implemented to group the candidates into a 
specified number of clusters. The number of relevant clusters, 4, has been 

determined with the Elbow Method, which is a graphical analysis of the Within 

Cluster Sum of Squares parameter variation function to the number of clusters. 
Therefore, running the K-means implementation over the collected data returned 4 

distinct populations whose characteristics were then evaluated. The frequencies 

were as follows: 1%, 2%, 14% and 83%. It was an interesting finding to realize that 
the cluster with the smallest population had the highest average and median values 

for hourly costs, earnings, number of delivered projects, number of worked hours 

and technical assessments scores. As opposite to this, the cluster with 83% share 

had the poorest scores. The middle clusters followed the same reasoning. 
Although the analysis is far from a scientific formalization, it leads the path 

to estimate the productivity of a target candidate based on the cluster he qualifies 

for. In conventional agile development methodologies this is already a common 
empirical practice to the extent of stating that a developer from a certain class, can 

deliver a rather precise number of story points per time unit. 
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7. Selecting the optimal set of Software Engineers 

 

Taking into account the previously processed set of data, the optimization 
solution we considered takes as inputs software engineers objects, referred as 

𝑤𝑖with the following relevant variables: 

 𝑐𝑖representing the hourly cost 

 𝑝𝑖representing the productivity associated to the corresponding cluster 

 𝑐𝑖representing the success rate, 𝑠𝑖 = 0,1 

 𝑡𝑖representing the time-zone integer variable, 𝑡𝑖 = 0,23 
 

 In a FTS1 configuration, the optimal team consists in a set of 3 candidates, 

𝑤𝑖 ,𝑤𝑗 ,𝑤𝑘who need to have complementary time-zones, which translates to:|𝑡𝑖 −

𝑡𝑗| = 8,, |𝑡𝑗 − 𝑡𝑘| = 8and 𝑡𝑖 ≠ 𝑡𝑘. 

 
 The criteria to calculate the optimal set on top of is as follows: 

 𝐷 =
𝑈

𝑝𝑖+𝑝𝑗+𝑝𝑘
, as the duration of the development process where 𝑈 is the 

estimated project effort, using the same units as estimating productivity. 

 𝐶 = 𝐷 ∗ 8 ∗ (𝑐𝑖 + 𝑐𝑗 + 𝑐𝑘), as the cost of the project 

 𝑆 = 𝑠𝑖 ∗ 𝑠𝑗 ∗ 𝑠𝑘 , as the probability that the development process is 

successful. 
 
In relation to this criteria, we formulated 3 optimization problems: for the 

minimum project cost, the minimum development duration and the maximum 

process success rate. 
The minimum cost problem requires finding the pair(s) of 3 developers 

which generate the minimum project cost, restricted by a maximum duration and a 

minimum success rate which are set as inputs. 
The minimum duration problem requires finding the pair(s) of 3 

developers which deliver the project with the minimum duration, restricted by a 

maximum duration and a minimum success rate which are set as inputs. 
The maximum success rate requires finding the pair(s) of 3 developers 

which have the maximum multiplied success probabilities, restricted by a 

maximum duration and a maximum project cost which are set as inputs. 
Apparently simple to solve, these problems require an unfeasible amount 

of time in case of a brute-force approach, i.e. generating all the combinations and 
sorting them by the optimization factors. For example, filtering the Upwork.com 

candidates by JavaScript as their programming technology, returned in September 

2019 more than 100.000 results. Assuming an equal distribution across time-zones, 
which is the least favorable scenario, this leads to approximately 4.000 candidates 
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per time-zone. From a computational perspective, the brute-force algorithm has a 

polynomial execution time, 𝑇(𝑛) = 8 ∗ 𝑂(𝑛3), where 𝑛 is the number of 
candidates per time-zone. A simulation with 50 candidates per time-zone on a 

Linux virtual machine with 1 processing core and 2 GB or memory required 53 

seconds to run. For 4000 candidates, based on the execution time class, we estimate 
the computation to consume more than 50000 days without taking into 

consideration that the database should accommodate at least 500 billion records. 
A mathematical optimization was therefore considered. The first step was 

to group the candidates in 8 sub-sets, based on their complementary time-zones and 

therefore, solving 8 lower complexity problems. The sub-problems were 

reformulated into Binary Integer Programming with linear-fractional constrains 

which through simple transformations resulted in linear constrains. However, the 
Objective Function was also linear-fractional. To overcome this, we used  

Dinkelbach’s (1967) Generalized Fractional Programming method. After this step, 

the problem’s type was once more transformed to a Mixed Integer Linear 
Programming one which although has a nondeterministic polynomial difficult 

execution time - NP-Hard can be computationally solved in a favorable manner by 

using acknowledged algorithms such as Branch and Bound (Nica, 2011). 
The implementation of the algorithm using R was computationally viable. 

The assumption was made after analyzing multiple execution times on generated 

data sets with more than 5000 candidates per time-zone, which varied between 2 

and 15 seconds. 
 

8. Conclusions 
 
The current research proposes a model to automatically recruit the optimal 

development cell of 3 software engineers working in a Follow the Sun framework, 
from an existing global resource of talents, Upwork.com. It’s worth mentioning 

that with minimal technical adjustments to the implementation stages, the model is 

compatible with other popular Freelancing platforms. 
Although the model has been validated per stages, a validation as a whole 

hasn’t been performed yet. This involves developing a relevant number of software 

products with the teams returned as optimal by the model and evaluating 

parameters such as budget, duration, software quality and overall success and is 
part of the authors future research goals. 
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