

Economic Computation and Economic Cybernetics Studies and Research, Issue 4/2020;Vol.54

43

DOI: 10.24818/18423264/54.4.20.03

Associate Lecturer Mihai GHEORGHE, PhD

E-mail: mihai.gheorghe@gdm.ro

Department of Economic Informatics and Cybernetics

The Bucharest University of Economic Studies

Professor Marian Dârdală, PhD

E-mail: dardala@ase.ro

Department of Economic Informatics and Cybernetics

The Bucharest University of Economic Studies

AN AUTOMATED RECRUITING MODEL FOR AN OPTIMAL

TEAM OF SOFTWARE ENGINEERS FROM GLOBAL

FREELANCING PLATFORMS

Abstract. The COVID-19 pandemic has dramatically changed the shape of

conventional recruitment processes over the past few months. Remote working

where it is technically possible has become a de facto standard all over the world.
For software development, Freelancing platforms, as virtually unlimited resources

of globally distributed talents, pose a great opportunity but also plenty of risks.

This study proposes an automated model for recruiting remote specialists in a

framework meant to reduce the time-to-market for software products. The results
are optimal in relation to the project’s cost, team’s productivity and overall

product success. The research methodology along with the system used to collect

data and the relevance of the data set are described.
Keywords: Freelance Marketplaces, Follow the Sun, Global Software

Development, Project Management, Automated recruiting.

JEL Classification: F66, J20, J46, M15, O30.

1. Introduction

Freelance Marketplaces such as Upwork, Freelancer.com or Guru facilitate

access to remote services from an unprecedented pool of specialists in various

fields. For instance, Upwork, arguably the largest platform of its kind, was reported
in 2018 as having 12 million active freelancers, out of which 500.000 were

registered as “Web, mobile and software development” specialists. Although

advanced filters for criteria including area of expertise, hourly rates, work history

and feedback are available, a client might still end up with a selection of thousands
of candidates which by all means is impossible to manually evaluate in a

Mihai Gheorghe, Marian Dârdală

44

DOI: 10.24818/18423264/54.4.20.03

reasonable time interval. This leads to a significant risk of not being able to recruit
the most suitable providers, which the current study aims to mitigate.

In a world where tech start-ups frequently emerge with the help of web and

mobile Minimum Viable Products, reducing the time-to-market for a software
product is crucial for the success of a business. Similar to many other fields, a

Software Development Process can be accelerated by vertically or horizontally

scaling the resources. Given the fact that software development is performed by

human operators, vertical scaling can be translated to hiring better prepared and
more productive team members, while horizontal scaling implies hiring more

resources to contribute in parallel. The first strategy has an impact on the

development cost, while the second on the complexity of the project management
process. Also, an important constraint is that most software architectures break the

product into logical components and technology layers where contributions cannot

be committed in parallel. Although modern web and mobile development
technologies take advantage of loosely-coupled architectures, with a precise

separation between data, user interface and logic layers, and working on multiple

functional features at the same time is possible, a limitation for parallel work is

reached within the same feature. To overcome this, programming in shifts has been
proposed and experimented starting with the late 90’s at IBM (Carmel, 1999), and

later on in other companies (Carmel et al., 2010), (Treinen & Miller Frost, 2006).

The concept, known as “Follow the Sun” or “Round the Clock Development”, aims
to reduce the time-to-market by contracting parallel teams of software engineers,

with complementary time-zones and with daily handoffs between shifts.
Offshore outsourcing for software development has been a common

practice for many years and with the emergence of global Freelancing platforms
along with recent large-scale adoption of remote work and coordination techniques

improvements is arguably the first option given the COVID-19 Pandemic context

when assessing the development framework for a web or mobile product.
This study identifies the cumulated benefits of the “Follow the Sun”

development, referred to as FTS, using individual freelance software engineers

recruited from acknowledged global marketplaces and proposes an automated
theoretical model for the optimal team.

2. Proposed Follow the Sun development framework

Due to the nature of its outcome, a large pool of globally-distributed

specialists and an overwhelming and easy to access documentation, web and
mobile software development is one of the most suitable sub-fields to be dealt with

remote resources. A continuous development process is theoretically possible with

development cells consisting of 3 full-time software engineers that are 8 hours
apart, based on their time-zones. It is a common practice that a full-time employee

to allocate 8.5 or 9 hours / day for the job with breaks included, allowing the model

An Automated Recruiting Model for an Optimal Team of Software Engineers from

Global Freelancing Platforms

__

45

DOI: 10.24818/18423264/54.4.20.03

to accommodate handoffs. Figure 1 depicts such a scenario, the configuration for

which the current study builds the optimal selection of candidates.
Other evaluated configurations of development in shifts models, with 4

shifts, having full or part-time allocation, are listed in Table 1 along with impact on

various metrics or risks compared to a conventional development process. A

significant positive impact is emphasized with a light green background, while a

negative impact has a red background.

Figure 1. Follow the Sun development with 3 full-time members

(FTS1) overlapping schedule

Assuming there is an equal hourly cost for all developers in a

configuration, all the FTS scenarios generate additional costs due to the schedule
overlap. In addition, the management of a software development process with

globally distributed human resources is more difficult.
However, the time-to-market is theoretically reduced to one third of the

one consumed in a conventional process. Furthermore, a positive impact on

software quality and innovation is possible due to taking advantage of continuous

knowledge sharing between team members. Higher overlapping contexts such as
the proposed FTS2, has redundant developers for 45% of the daily time schedule.

This facilitates pair-programming and consistent code-reviewing which as shown

in (Beck & Fowler, 2001), (Layman et al., 2006) can even simplify the Quality

Assurance processes.

Mihai Gheorghe, Marian Dârdală

46

DOI: 10.24818/18423264/54.4.20.03

Table 1. Various Follow the Sun configurations compared to

conventional development

Conv.

1x8.5h / day
FTS1

3x8.5h/ day
FTS2

4x8.5h / day
FTS3

4x6.5h / day

Time-to-market

reduced with
0 64.44% 63.64% 63.64%

Hourly rate cost
increase

0 6.66% 45.45% 9.09%

Impact on software
quality and innovation

- + +++ +

Impact on efficiency 0 0 0 +

Reducing QA effort - - + -

Impact on project when

one member becomes

unavailable
High Low Low Low

Synchronization and

handoff risk
n/a High Low High

Synchronization

between all members
n/a + - -

Impact on Project

Management effort
+ - - -

3. The overall architecture of the automated selection flow

Considering the FTS1 framework, and the aforementioned shortcoming that

a list of compatible candidates may be too large for a human operator to evaluate,
the problem to which the current study proposes a solution is to create an

automated flow that would return the optimal set(s) of 3 developers, by analyzing

the same information to which a human decision maker might have access. The
optimal selection has to be in relation with the following criteria:

 The duration of the development processes based on the estimated project
effort divided by the predicted productivity of each team member.

 The cost of development, as the total amount paid to the developers, which
computes to hourly rates multiplied by the duration.

 The Success Rate of the development process, as a probability predicted
from the technical expertise and work history of each team member.

From an architectural perspective, the proposed solution has 4 stages as

also depicted in Figure 2:

An Automated Recruiting Model for an Optimal Team of Software Engineers from

Global Freelancing Platforms

__

47

DOI: 10.24818/18423264/54.4.20.03

1. Defining the requirements of the software project, representing the

flow’s input with the objective of narrowing the stack of specialists to a

sub-set of required technologies. Additionally, it has to provide a
quantitative estimation of the development effort. Acknowledged Agile

software methodologies determine the duration based on a total of

estimated story-points and the amount of story points a developer from a
certain expertise / seniority class typically delivers / day or week.

Figure 2. The Architecture of the automated selection solution

Mihai Gheorghe, Marian Dârdală

48

DOI: 10.24818/18423264/54.4.20.03

2. Collecting Data is the phase in which the profiles of compatible
candidates are retrieved using a custom-built crawling and scraping

application from the Freelancing platform and converted to a structured

data set.

3. Predicting individual Job Success Scores and Seniority Classification
involves applying and validating Machine Learning algorithms over the

data set in order to be able to compute a risk factor and the productivity
class for each candidate.

4. Finding the optimal team consists of theoretically solving and

implementing an optimization problem to select the most suitable set of 3
developers that have complementary time-zones in relation to the project

requirements.

4. The data set

In order to validate the selection model, real data was considered.
Upwork.com was chosen as the data source given its market share but also the

authors familiarity with the platform.
Freelancer profiles on Upwork resemble a personal Curriculum Vitae,

showcasing expertise areas, qualifications for various technical assessments, hourly

rates and the history of jobs delivered through the platform.
An individual metric of high importance for this study, available on each

freelancer’s profile, is the Job Success Score which is a subjective boolean input

from customers in regard to the outcome of each project delivered through the

platform.
At the moment of the study, the website indicated a modern architecture

built around a Single-Page Application and multiple back-end APIs. As shown in

Gheorghe et al. (2018), the web page for this type of applications is dynamically

rendered when data is retrieved from the server, making automated data collecting
difficult through conventional methods such as interpreting HTTP responses. To

overcome this, a mechanism to automate a headless browser and extract the

necessary data was created. The solution, built with Python and Selenium

WebDriver, consists of a web-crawler to retrieve the software engineers profile
URLs based on various search criteria, and a scraper to extract information from an

individual profile to a structured data set. In order to minimize the server stress, a

crawl politeness strategy was set in place, mainly through issuing page requests at
intervals of 150 seconds or higher.

To emphasize the relevance of the data set, a summary of the collected data

is presented in Table 2.
Furthermore, analyzing the histograms for each variable showed

anticipated distributions with no abnormal frequency drops, so we are entitled to

state that the dataset is statistically significant.

An Automated Recruiting Model for an Optimal Team of Software Engineers from

Global Freelancing Platforms

__

49

DOI: 10.24818/18423264/54.4.20.03

Table 2. Summary of the collected profiles

Profiles Projects Projects

value
Hours

worked
Technical

tests
Countries Hourly

rates

2,670 55,594 $71,065,349 3,107,467 8,168 103 $3 - 250

After being collected, the data set was pre-processed, reducing the number

of metrics from 120 to 21 by grouping similar technical assessment scores into

categories relevant for web and mobile development, and taking the maximum

score, if any, for each of these. Also for each candidate, the country, a categorical
variable, was assigned to one of 7 distinct geographical regions. A high number of

metrics, later on serving as independent variables, would have raised

multicollinearity issues with the Machine Learning algorithms used in the

following stage of the model.

5. Predicting the Job Success Score

Although the Job Success Score, JSS, was computed for each freelancer,
the platform doesn’t display this metric if its value is less than 60%. Equally, we

considered that the model should accommodate new entries as well, for which a

JSS cannot be determined until the first project is delivered through the platform.
Therefore, it was of great interest to predict the chances a software engineer

successfully delivers a new project based on his country, hourly cost, expertise and

work history.
Using Python and the scikit-learn library (Pedregosa et al., 2011), the first

attempt was to implement a Multiple Linear Regression with a Backward

Elimination algorithm. Although the program removed 7 independent variables

until the predictor reached a theoretical statistical significance by having an
acceptable Adjusted R2 and p-value, validating the model through multiple training

and test sets, k-fold cross-validation (Kohavi, 1995), returned a poor accuracy of

only 30.58%. This leads to the following preliminary conclusion: a linear
dependency between the profile and the JSS cannot be determined.

The following step was to try to predict the JSS with Random Forrest

Regression which is an Ensemble Learning algorithm that computes the average

prediction of multiple Decision Trees. Using a Grid-Search strategy to find the
most performing set of parameters and validate the regressor through k-fold cross-

validation, the returned accuracy over our data set was 63.03%, a noticeable

improvement from the previous predictor. However, running a feature-importances
analysis revealed a strongly dominant feature identified as the number of delivered

projects variable from the data set, with a score of 62.44%. Therefore, a second

preliminary conclusion is that in estimating the JSS, the work experience has the

Mihai Gheorghe, Marian Dârdală

50

DOI: 10.24818/18423264/54.4.20.03

most significant weight. Other factors, such as technical assessments scored less
than 1%. Furthermore, the less significant variable was the country of origin. We

interpret this as highly relevant for a software development methodology that

pursues employment of globally-distributed specialists.
Given the fact the goal of this study is to select the optimal set of 3

software engineers, the focus was changed towards estimating the project’s overall

success chances, as per the following formula:

 𝑆 = ∏ 𝐽𝑆𝑆𝑖
3
𝑖=1 (1)

In this new context, imagining all 3 team members with individual JSS of

80% or lower would render the project’s success to less than 50% as showcased in

Figure 3, which many might find unacceptable.

Figure 3. Classes of risk

Therefore, instead of the aiming to precisely estimate individual JSS, the
problem was transformed to a classification one, still relevant to the selection

model. To enforce this reasoning, at the time of this research, it was notorious

among users of popular Freelancing platforms that technical test scores were
arguably easy to bias, due to their quick disclosure over the Internet.

For the classification problem, due to the complexity of factors that might

determine a customer to set a project as successful or not, doubled by the poor

statistical performance of other regression models, we opted for a Feed Forward
Neural Network with adam as the Stochastic Gradient Descent improved technique

to optimize the cost function (Kingma & Ba, 2014). The implementation of the

classifier was done in Python with the Tensorflow ANN framework and Keras.
Grid-Search was also used to find the best performing model parameters.

Validating the model through a confusion matrix returned a remarkable

accuracy of 81.04% compared to the real observations.

An Automated Recruiting Model for an Optimal Team of Software Engineers from

Global Freelancing Platforms

__

51

DOI: 10.24818/18423264/54.4.20.03

An interesting finding was revealed when the classifier was run on the

dataset after job history related metrics were removed. Although inferior to the

previous one, the resulted 65.40% accuracy leads us to a third preliminary
conclusion which is: new entries can be risk classified only with technical

assessments, country of origin, hourly rate and English score. It is reasonable to

consider a performance improvement of this classification model in relation with a

more rigorous technical testing framework.

6. Segmenting candidates into productivity classes

Rigorously establishing a hierarchy or classification among software
engineers based on their expertise level and productivity represents an endeavor

across industry. Although seniority classes have similar titles, for instance

variations for junior / mid / senior developer, technical leader and solution

architect, different companies may have different standards in assigning these roles
as quantifying experience, efficiency and productivity hasn’t been yet standardized

for all software technologies or project complexity levels (Duarte, 2014), (Raza &

Faria, 2014).
Therefore, especially for evaluating a high number of candidates, it is of

high importance to segment the population into sub-sets based on empirical

measured metrics such as working history, productivity and technical abilities.
Given that there is no observable dependent variable to predict or to classify, the

solution is an unsupervised analysis.
As one of the most established methods in the field of unsupervised

learning, the K-means algorithm was implemented to group the candidates into a
specified number of clusters. The number of relevant clusters, 4, has been

determined with the Elbow Method, which is a graphical analysis of the Within

Cluster Sum of Squares parameter variation function to the number of clusters.
Therefore, running the K-means implementation over the collected data returned 4

distinct populations whose characteristics were then evaluated. The frequencies

were as follows: 1%, 2%, 14% and 83%. It was an interesting finding to realize that
the cluster with the smallest population had the highest average and median values

for hourly costs, earnings, number of delivered projects, number of worked hours

and technical assessments scores. As opposite to this, the cluster with 83% share

had the poorest scores. The middle clusters followed the same reasoning.
Although the analysis is far from a scientific formalization, it leads the path

to estimate the productivity of a target candidate based on the cluster he qualifies

for. In conventional agile development methodologies this is already a common
empirical practice to the extent of stating that a developer from a certain class, can

deliver a rather precise number of story points per time unit.

Mihai Gheorghe, Marian Dârdală

52

DOI: 10.24818/18423264/54.4.20.03

7. Selecting the optimal set of Software Engineers

Taking into account the previously processed set of data, the optimization
solution we considered takes as inputs software engineers objects, referred as

𝑤𝑖with the following relevant variables:

 𝑐𝑖representing the hourly cost

 𝑝𝑖representing the productivity associated to the corresponding cluster

 𝑐𝑖representing the success rate, 𝑠𝑖 = 0,1

 𝑡𝑖representing the time-zone integer variable, 𝑡𝑖 = 0,23

 In a FTS1 configuration, the optimal team consists in a set of 3 candidates,

𝑤𝑖 ,𝑤𝑗 ,𝑤𝑘who need to have complementary time-zones, which translates to:|𝑡𝑖 −

𝑡𝑗| = 8,, |𝑡𝑗 − 𝑡𝑘| = 8and 𝑡𝑖 ≠ 𝑡𝑘.

 The criteria to calculate the optimal set on top of is as follows:

 𝐷 =
𝑈

𝑝𝑖+𝑝𝑗+𝑝𝑘
, as the duration of the development process where 𝑈 is the

estimated project effort, using the same units as estimating productivity.

 𝐶 = 𝐷 ∗ 8 ∗ (𝑐𝑖 + 𝑐𝑗 + 𝑐𝑘), as the cost of the project

 𝑆 = 𝑠𝑖 ∗ 𝑠𝑗 ∗ 𝑠𝑘 , as the probability that the development process is

successful.

In relation to this criteria, we formulated 3 optimization problems: for the

minimum project cost, the minimum development duration and the maximum

process success rate.
The minimum cost problem requires finding the pair(s) of 3 developers

which generate the minimum project cost, restricted by a maximum duration and a

minimum success rate which are set as inputs.
The minimum duration problem requires finding the pair(s) of 3

developers which deliver the project with the minimum duration, restricted by a

maximum duration and a minimum success rate which are set as inputs.
The maximum success rate requires finding the pair(s) of 3 developers

which have the maximum multiplied success probabilities, restricted by a

maximum duration and a maximum project cost which are set as inputs.
Apparently simple to solve, these problems require an unfeasible amount

of time in case of a brute-force approach, i.e. generating all the combinations and
sorting them by the optimization factors. For example, filtering the Upwork.com

candidates by JavaScript as their programming technology, returned in September

2019 more than 100.000 results. Assuming an equal distribution across time-zones,
which is the least favorable scenario, this leads to approximately 4.000 candidates

An Automated Recruiting Model for an Optimal Team of Software Engineers from

Global Freelancing Platforms

__

53

DOI: 10.24818/18423264/54.4.20.03

per time-zone. From a computational perspective, the brute-force algorithm has a

polynomial execution time, 𝑇(𝑛) = 8 ∗ 𝑂(𝑛3), where 𝑛 is the number of
candidates per time-zone. A simulation with 50 candidates per time-zone on a

Linux virtual machine with 1 processing core and 2 GB or memory required 53

seconds to run. For 4000 candidates, based on the execution time class, we estimate
the computation to consume more than 50000 days without taking into

consideration that the database should accommodate at least 500 billion records.
A mathematical optimization was therefore considered. The first step was

to group the candidates in 8 sub-sets, based on their complementary time-zones and

therefore, solving 8 lower complexity problems. The sub-problems were

reformulated into Binary Integer Programming with linear-fractional constrains

which through simple transformations resulted in linear constrains. However, the
Objective Function was also linear-fractional. To overcome this, we used

Dinkelbach’s (1967) Generalized Fractional Programming method. After this step,

the problem’s type was once more transformed to a Mixed Integer Linear
Programming one which although has a nondeterministic polynomial difficult

execution time - NP-Hard can be computationally solved in a favorable manner by

using acknowledged algorithms such as Branch and Bound (Nica, 2011).
The implementation of the algorithm using R was computationally viable.

The assumption was made after analyzing multiple execution times on generated

data sets with more than 5000 candidates per time-zone, which varied between 2

and 15 seconds.

8. Conclusions

The current research proposes a model to automatically recruit the optimal

development cell of 3 software engineers working in a Follow the Sun framework,
from an existing global resource of talents, Upwork.com. It’s worth mentioning

that with minimal technical adjustments to the implementation stages, the model is

compatible with other popular Freelancing platforms.
Although the model has been validated per stages, a validation as a whole

hasn’t been performed yet. This involves developing a relevant number of software

products with the teams returned as optimal by the model and evaluating

parameters such as budget, duration, software quality and overall success and is
part of the authors future research goals.

REFERENCES

[1] Beck, K. and Fowler, M. (2001), Planning Extreme Programming. Addison-

Wesley Professional;
[2] Carmel, E. (1999), Global Software Teams: Collaborating across Borders

and Time Zones. Prentice Hall PTR;

Mihai Gheorghe, Marian Dârdală

54

DOI: 10.24818/18423264/54.4.20.03

[3] Carmel, E., Espinosa, J.A. and Dubinsky, Y. (2010), " Follow the Sun"

Workflow in Global Software Development. Journal of Management Information

Systems, 27(1), pp.17-38;
[4] Dinkelbach, W. (1967), On Nonlinear Fractional Programming.
Management science, 13(7), pp.492-498;
[5] Duarte, C.H.C. (2014), June, On the Relationship between Quality

Assurance and Productivity in Software Companies. In Proceedings of the 2nd

International Workshop on Conducting Empirical Studies in Industry (pp. 31-38).
ACM;
[6] Gheorghe, M., Mihai, F.C. and Dârdală, M. (2018), Modern Techniques of

Web Scraping for Data Scientists. Romanian Journal of Human-Computer
Interaction, 11(1), pp.63-75;

[7] Kohavi, R. (1995), August, A Study of Cross-Validation and Bootstrap for

Accuracy Estimation and Model Selection. In Ijcai (Vol. 14, No. 2, pp. 1137-
1145);

[8] Kingma, D.P. and Ba, J. (2014), Adam: A Method for Stochastic

Optimization. arXiv preprint arXiv:1412.6980;

[9] Layman, L., Williams, L., Damian, D. and Bures, H. (2006), Essential

Communication Practices for Extreme Programming in a Global Software

Development Team. Information and Software Technology, 48(9), pp.781-794;

[10] Nica, V.T. (2011), Curs Cercetări Operaţionale I. Academia de Studii
Economice din Bucuresti;

[11] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and

Vanderplas, J.(2011), Scikit-learn: Machine Learning in Python. The Journal of
machine Learning research, 12, pp.2825-2830;

[12] Raza, M. and Faria, J.P. (2014), May, A Model for Analyzing Estimation,

Productivity, and Quality Performance in the Personal Software Process. In
Proceedings of the 2014 International Conference on Software and System Process

(pp. 10-19). ACM.

